

1st Latin American Music Information Retrieval Workshop

December 9 - 11, 2024 - Rio de Janeiro

AEROMamba: An efficient architecture for audio super-resolution using generative adversarial networks and state space models

Wallace Abreu*, Luiz W. P. Biscainho

Signals, Multimedia and Telecommunications Lab, Federal University of Rio de Janeiro, Brazil *wallace.abreu@smt.ufrj.br

1. MOTIVATION

- Background Restoration of analog audio:
 - Historical recordings
 - Media degradation

- AEROMamba
- AERO = Audio-Super
 - Docolution Model

AEROMamba - 44.1 kHz

- Technology limitations
- Super-resolution
 - Digital audio applications
 - Lossy operations to reduce storage usually involve bandwidth reduction
 - e.g. Decimation and compression
- Generative adversarial networks:
 - Sampling is faster than Markov-chainbased architectures (e.g. Diffusion Models)
 - AERO as the base model
- Proposed Modification:
 - Replacement of recurrent and attention layers by Mamba

Resolution Model	\mathbf{FTB}
Mamba = Efficient State Space Model	GELU(Conv1D)
AERO	
GAN architecture:	SNAKE(LN(Conv1D))
 Hybrid Demucs-based Generator 	Mamba
MelGAN Discriminator	$ GLU(LN(Conv1D)) \qquad \qquad$
Mamba Emulates selective mechanism of attention Exploits GPU structure	$\begin{array}{c c} LayerScale \\ \hline \\ GLU(Conv1D) \\ \hline \\ Encoder_{i+1} \\ \hline \\ Decoder_{i} \\ \end{array}$

2. PROPOSED MODEL

3. RESULTS

Experiments

Computational Performance

- Super-resolution of popular music and piano pieces from 11.025 to 44.1 kHz
 - PianoEval (private collection dataset)
 - MUSDB18-HQ (opensource dataset)

Evaluation

- GPU usage and Inference speed
- Objective metrics: ViSQOL and LSD
- Subjective metrics: listening tests with 20 subjects, targeting audio

Method	NVIDIA RTX 3090		NVIDIA RTX 2080 Ti		Parameters	
	GPU Usage (MB)	Time (s)	GPU Usage (MB)	Time (s)		
AERO AEROMamba	17091 3000	1.246 0.087	16420* 1914	- 0.063	19,432,958 20,964,190	

Objective and Subjective Metrics

					Model	PianoEval			
Inference	Model	MUSDB18		WIGUEI	ViSQOL ↑	LSD↓	Score ↑		
		ViSQOL ↑	LSD↓	Score ↑	Low-Resolution	4.36	1.09	72.92	
ics: ViSQOL	Low-Resolution	1.82	3.98	38.22	AERO	4.38	0.99	76.89	
	AERO	2.90	1.34	60.03	AERO-HQ	4.34	1.04	-	
rics:	AEROMamba	2.93	1.23	66.47	AEROMamba	4.43	0.98	-	
					AEROMamba-HQ	4.38	1.00	84.41	

similarity

Conclusions

- AEROMamba is 15x faster than AERO in inference using 5x-9x less GPU
- AEROMamba achieves higher perceptual quality than AERO
- For a fixed batch size,
 AEROMamba needs 2x-4x
 less GPU to train

Low Res - 11.025 kHz

AERO - 44.1 kHz