Symbolic music style transfer via latent space transformations: model and evaluation

Pablo Riera^{1,2} Diego Fernández Slezak^{1,2} Lucas Somacal^{1*} Martín Miguel³

¹ University of Buenos Aires. Faculty of Natural and Exact Sciences. Computer Science Department. Buenos Aires, Argentina.
² CONICET-University of Buenos Aires. Computer Science Institute (ICC). Buenos Aires, Argentina.
³ McMaster University, Ontario, Canada

*Corresponding author: lsomacal@dc.uba.ar

GOAL: change the style of music in symbolic format to mimic a specific music style and present new evaluation methods.

Two VAEs for symbolic musical style transfer achieve resemblance to the target style, musicality, and identity preservation.

Previously...

Previous symbolic style transfer work:

- Model transfer from 1 specific source style to 1 specific target style (Generative Adversarial Networks (GANs) [1], Variational Autoencoders (VAEs) [2])
- Models generate continuations for an input musical fragment in a specific style (DeepJ [3], MuseNet [4])

0

- Previous evaluation methods:
- subjective listening tests
- comparison of the distributions of features to assess musicality [3]
- comparison of the predictions of style classifiers [1, 2]

Datasets

- Lakh Midi Dataset [5]: classic pop and rock, pop, folk or classical (tags from musicbrainz.org) - 155,037 music fragments.
- KernScores [6] (fine-tuning and evaluation): Bach's chorals, Frescobaldi's canzoni, Mozart piano sonatas and ragtimes -2032 fragments.
- Validation set: 10% of KernScores.

Music representation and model

• Input: matrices of 1s and 0s with 64 rows as time units (semiquavers, spanning 4 bars) and 89 columns indicating pitch and note changes (rhythm).

What's new?

We propose:

- to do multi-style transfer with a single model,
- doing latent space vector arithmetic,
- to adjust the transformation level with a parameter $\alpha \in (0, \infty)$

New evaluation methods on three distinct aspects:

- whether the generated fragment presents the target musical style
- whether the generated fragment is **musical**
- and whether the generated fragment still resembles the input.

Did it work?

We evaluated two models on a specific dataset (KernScores):

- A model trained on a large dataset (Lakh) [*pre*]
- A fined tuned version of *pre* on the evaluation dataset [*fine*]

Both models managed to produce new music that was closer to the target style, was musical and preserved the identity of the original music fragment.

The *fine*-tuned model **performed slightly better** than **pre**.

S

- Adaptation of the model from [7] (a VAE):
 - Encoder: 2 bi-GRU + 2 Dense
 - Latent space: 96 dimensions
 - Decoder: **Repeat vector + 2 GRU + Dense**.
- We trained two models:
 - *Pre* fine-tuning: based on Lakh Midi Dataset.
- *Fine*-tuning: fine-tuned in KernScores.

1. The generated fragment belongs to the target style?

A transformation is **successful** if the generated fragment m' is closer to the target style s than the original fragment m, that is:

 $\Delta(m', M_s) < \Delta(m, M_s)$

- We measure the distance between a fragment and a style with **optimal transport**
- For each pair of source-target styles we calculate the percentage of generated fragments that became closer to the target style.

2. The generated fragment remains musical?

Musicality: the percentage of permutations that are less likely sampled (δ) from an **universal style**.

- We consider a *universal style* M_" formed by the balanced sum of the fragments of the different styles of a dataset:
- For each original fragment we generated 20 permutations by reordering the notes in time.
- The sampling likelihood is defined as: $\delta(m, M_u) = \sum_{x,y} \log \left(\sum_{x,y}^{i} (M_u) \right) \sigma_{x,y}^{i}(m) + \sum_{x,y} \log \left(\sum_{x,y}^{r} (M_u) \right) \sigma_{x,y}^{r}(m)$

Figure 1: workflow of the style transfer method.

- 1. We encode 64x89 binary matrices representing two tracks (melody and bass) of a fragment of 64 semiguavers of music.
- 2. We add the characteristic vector v_s , of the target style and subtract the characteristic vector v_{α} of the **original style** weighted by $\alpha \in (0,1]$.
- 3. We decode it to obtain the new fragment.

 $t_{s,s}(m) = decode(encode(m) + \alpha(v_{s}, - v_{s}))$

3. The generated fragment is similar to the original?

m' retained characteristics of *m*, the higher it appears in the similarity ranking.

- We propose a **similarity ranking** between *m* against the set composed of *m*' and all other fragments of the original style.
- Two fragments' similarity is the inverse of how many semitones the notes differ between one fragment and the other for each time instant (a rest compared with a note is considered as 12).
- The score is bound by 0 and 1 where 1 is the best value.

S

onclusion

Avg. of % Figure 1: average of percentage of successful transformation for each pair of styles (for each alpha value and models)

- As *α* gets larger, more transformed fragments are closer to the target style.
- There are no noticeable differences between the *pre* and *fine* models, except with the small α , where *pre* performs better.

Figure 2: average of percentage of permutations that are less musical than m' for each style pair of styles (for each alpha value and models).

- A larger α yields a larger transformation, which may yield less musical results (Nonetheless, most cases are above 80%).
- Fine-tuned model performs slightly better than pre.

Score **Figure 3**: distribution of the values of the score function (for each alpha value and models).

- With a large α value the performance is worse but still good.
- *Fine-tuned* model performs slightly better than *pre*.

• Our models managed to generate new fragments that remained musical, kept the identity of the original fragment and that were also closer to the target style.

- This happened for **certain values of** α (0.1 and 0.5).
- A greater α implies more style approach but less musicality.
- The model trained on a general music dataset was successful even on the distinct set of evaluation styles.
- When observing the performance between specific source-target style pairs, we noticed performance varied.
- The model struggled to transform between Mozart and Ragtime, contrary to our expectation that styles with similar complexity would yield better results.
- As future work, we suggest validating our proposed metrics with **listener surveys** and **compare** our metrics with those used in **previous work**.
- Our transformation method could benefit from the latent **space disentanglement** to represent style.
- Compare the style-specific vs. general approaches.

References

[1] G. Brunner, Y. Wang, R. Wattenhofer, and S. Zhao, "Symbolic music genre transfer with cyclegan", 2018. [2] G. Brunner, A. Konrad, Y. Wang, and R. Wattenhofer, "MIDI-VAE: modeling dynamics and instrumentation of music with applications to style transfer", 2018. [3] H. H. Mao, T. Shin, and G. Cottrell, "Deepj: Style-specific music generation", 2018. [4] C. Payne, "Musenet," openai.com/blog/musenet, 2019. [5] C. Raffel, "Learning-based methods for comparing sequences, with applications to audio-to-midi alignment and matching", 2016. [6] "Kernscores," https://kern.humdrum.org/. [7] R. Guo, I. Simpson, T. Magnusson, C. Kiefer, and D. Herremans, "A variational autoencoder for music generation controlled by tonal tension", 2020. [8] P. Zivic, F. Shifres, and G. Cecchi, "Perceptual basis of evolving western musical styles", 2013.